gtDECKDRAIN 2540S/NW20XUV

Soils, Growing Media & Barks

green-tech

A lightweight, high performance drainage layer with integrated filter geotextile to eliminate clogging for intensive green roofs. gtDeckdrain has been developed to provide high flow capacity and waterproofing. It is durable and sufficiently robust to resist mechanical stresses imposed during installation and throughout its lifespan.

GEOCOMPOSITE PROPER	RTIES					
Thickness at 2kPa	(mm)	26.9			±10%	EN ISO 9863-1
Mass per unit area	(g/m²)	2 500			approx	EN ISO 9864
Tensile strength MD / CMD	(kN/m)	20/20			-13%	EN ISO 10319
Elongation at peak MD / CMD	(%)	45 / 55			nominal	EN ISO 10319
CBR puncture resistance	(N)	5 600			-20%	EN ISO 12236
Perpendicular Water Inflow	(dimple side only)					
Water flow at 50mm head	(l/m²·s)	75			±30%	EN ISO 11058
At 2kPa permeability (coefficient)	(m/s)	2.8 x 10 ⁻³			±30%	EN ISO 11058
Breakthrough head	(mm)	0			nominal	
In-plane water flow MD ³		<u>HG = 1.0</u>		<u>HG = 0.1</u>		Hydraulic gradient
at 20kPa confining pressure	(l/m·s)	11.75	-20%	4.05	-20%	EN ISO 12958
at 100kPa confining pressure	(l/m·s)	9.15	-20%	2.85	-20%	EN ISO 12958
at 200kPa confining pressure	(l/m·s)	7.95	-20%	2.35	-20%	EN ISO 12958
with soft foam contact surfaces to flow rates shown above are all equ						essures of the
			n compressiv	/e strength of th		EN 12224
flow rates shown above are all equ		in the long-terr	n compressiv	/e strength of th		
flow rates shown above are all equ Resistance to weathering		To be covere Excellent	n compressiv ed in 28 days	/e strength of th		EN 12224
flow rates shown above are all equination of the second state of t	al to or less tha	To be covere Excellent	n compressiv ed in 28 days	ve strength of th		EN 12224
flow rates shown above are all equination of the second state of t	al to or less tha	To be covere Excellent	n compressiv ed in 28 days	ve strength of th		EN 12224
flow rates shown above are all equinations of the second state of	al to or less tha	n the long-terr To be covere Excellent 120 years (m	n compressiv ed in 28 days	ve strength of th	e product.	EN 12224 EN 14030
flow rates shown above are all equinations of the second state of	al to or less tha S (mm)	In the long-terr To be covere Excellent 120 years (m 1.75	n compressiv ed in 28 days	ve strength of th	e product. ±20%	EN 12224 EN 14030 EN ISO 9863-1
flow rates shown above are all equinations of the streng of the streng of the streng of the streng of the strength MD/CMD of the strength	al to or less tha S (mm) (kN/m)	To be covere Excellent 120 years (m 1.75 20 / 20	n compressiv ed in 28 days	ve strength of th	e product. ±20% -13%	EN 12224 EN 14030 EN ISO 9863-1 EN ISO 10319
flow rates shown above are all equilibrium of the second state of	al to or less tha (mm) (kN/m) (μm)	In the long-terr To be covere Excellent 120 years (m 1.75 20 / 20 70	n compressiv ed in 28 days	ve strength of th	e product. ±20% -13% ±30%	EN 12224 EN 14030 EN 15O 9863-1 EN 15O 10319 EN 15O 12956
flow rates shown above are all equinations of the second state of	al to or less tha (mm) (kN/m) (μm) (N) (mm)	In the long-terr To be covere Excellent 120 years (m 1.75 20 / 20 70 3 400 17	n compressiv ed in 28 days hanufacturer's	ve strength of th	±20% -13% ±30% -20%	EN 12224 EN 14030 EN 15O 9863-1 EN 15O 10319 EN 15O 12956 EN 15O 12236 EN 15O 13433
flow rates shown above are all equilibrium of the sistance to weathering resistance to chemicals resign life GEOTEXTILE PROPERTIES Thickness at 2kPa rensile strength MD/CMD Pore size 0 ₉₀ CBR puncture resistance Dynamic perforation cone drop	al to or less tha (mm) (kN/m) (μm) (N) (mm)	In the long-terr To be covere Excellent 120 years (m 1.75 20 / 20 70 3 400 17	n compressiv ed in 28 days hanufacturer's	ve strength of th	e product. ±20% -13% ±30% -20% +20%	EN 12224 EN 14030 EN 15O 9863-1 EN 1SO 10319 EN 1SO 12956 EN 1SO 12236 EN 1SO 13433
flow rates shown above are all equilibrium rates rates and resistance to chemicals and resistance resistance and resi	al to or less tha (mm) (kN/m) (μm) (N) (mm) Non-woven t	In the long-terr To be covere Excellent 120 years (m 1.75 20 / 20 70 3 400 17	n compressiv ed in 28 days aanufacturer's ed and heat-t	ve strength of th	e product. ±20% -13% ±30% -20% +20%	EN 12224 EN 14030 EN 15O 9863-1 EN 1SO 10319 EN 1SO 12956 EN 1SO 12236 EN 1SO 13433

NOTES

 The values given are indicative and correspond to nominal results obtained in laboratories and testing institutes. In line with policies of continuous improvement the right is reserved to make changes without notice at any time.

2. Final determination of the suitability of any information is the sole responsibility of the user.

3. The tolerance on roll length is $\pm 1.5\%$ and on roll width is $\pm 1.0\%$

4. Guidance on interface shear strength, creep and certain other parameters is available. Site specific tests are strongly recommended.

Green-tech endeavour to ensure that the information given on this technical data sheet is accurate but accept no liability for its use or suitability for particular application.

01423 332100 sales@green-tech.co.uk www.green-tech.co.uk

